Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Circ Heart Fail ; 14(3): e007767, 2021 03.
Article in English | MEDLINE | ID: covidwho-2319497

ABSTRACT

BACKGROUND: The expense of clinical trials mandates new strategies to efficiently generate evidence and test novel therapies. In this context, we designed a decentralized, patient-centered randomized clinical trial leveraging mobile technologies, rather than in-person site visits, to test the efficacy of 12 weeks of canagliflozin for the treatment of heart failure, regardless of ejection fraction or diabetes status, on the reduction of heart failure symptoms. METHODS: One thousand nine hundred patients will be enrolled with a medical record-confirmed diagnosis of heart failure, stratified by reduced (≤40%) or preserved (>40%) ejection fraction and randomized 1:1 to 100 mg daily of canagliflozin or matching placebo. The primary outcome will be the 12-week change in the total symptom score of the Kansas City Cardiomyopathy Questionnaire. Secondary outcomes will be daily step count and other scales of the Kansas City Cardiomyopathy Questionnaire. RESULTS: The trial is currently enrolling, even in the era of the coronavirus disease 2019 (COVID-19) pandemic. CONCLUSIONS: CHIEF-HF (Canagliflozin: Impact on Health Status, Quality of Life and Functional Status in Heart Failure) is deploying a novel model of conducting a decentralized, patient-centered, randomized clinical trial for a new indication for canagliflozin to improve the symptoms of patients with heart failure. It can model a new method for more cost-effectively testing the efficacy of treatments using mobile technologies with patient-reported outcomes as the primary clinical end point of the trial. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04252287.


Subject(s)
Canagliflozin/therapeutic use , Heart Failure/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Telemedicine , Actigraphy/instrumentation , Canagliflozin/adverse effects , Double-Blind Method , Exercise Tolerance/drug effects , Fitness Trackers , Heart Failure/diagnosis , Heart Failure/physiopathology , Humans , Mobile Applications , Quality of Life , Randomized Controlled Trials as Topic , Recovery of Function , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Stroke Volume/drug effects , Telemedicine/instrumentation , Time Factors , Treatment Outcome , United States , Ventricular Function, Left/drug effects
2.
Hypertension ; 76(5): 1526-1536, 2020 11.
Article in English | MEDLINE | ID: covidwho-2153220

ABSTRACT

ACE2 (angiotensin-converting enzyme 2) is a key component of the renin-angiotensin-aldosterone system. Yet, little is known about the clinical and biologic correlates of circulating ACE2 levels in humans. We assessed the clinical and proteomic correlates of plasma (soluble) ACE2 protein levels in human heart failure. We measured plasma ACE2 using a modified aptamer assay among PHFS (Penn Heart Failure Study) participants (n=2248). We performed an association study of ACE2 against ≈5000 other plasma proteins measured with the SomaScan platform. Plasma ACE2 was not associated with ACE inhibitor and angiotensin-receptor blocker use. Plasma ACE2 was associated with older age, male sex, diabetes mellitus, a lower estimated glomerular filtration rate, worse New York Heart Association class, a history of coronary artery bypass surgery, and higher pro-BNP (pro-B-type natriuretic peptide) levels. Plasma ACE2 exhibited associations with 1011 other plasma proteins. In pathway overrepresentation analyses, top canonical pathways associated with plasma ACE2 included clathrin-mediated endocytosis signaling, actin cytoskeleton signaling, mechanisms of viral exit from host cells, EIF2 (eukaryotic initiation factor 2) signaling, and the protein ubiquitination pathway. In conclusion, in humans with heart failure, plasma ACE2 is associated with various clinical factors known to be associated with severe coronavirus disease 2019 (COVID-19), including older age, male sex, and diabetes mellitus, but is not associated with ACE inhibitor and angiotensin-receptor blocker use. Plasma ACE2 protein levels are prominently associated with multiple cellular pathways involved in cellular endocytosis, exocytosis, and intracellular protein trafficking. Whether these have a causal relationship with ACE2 or are relevant to novel coronavirus-2 infection remains to be assessed in future studies.


Subject(s)
Coronavirus Infections/epidemiology , Disease Outbreaks/statistics & numerical data , Disease Progression , Heart Failure/enzymology , Heart Failure/physiopathology , Peptidyl-Dipeptidase A/blood , Pneumonia, Viral/epidemiology , Academic Medical Centers , Analysis of Variance , Angiotensin-Converting Enzyme 2 , Biomarkers/metabolism , COVID-19 , Cohort Studies , Coronavirus Infections/prevention & control , Female , Humans , Linear Models , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Prognosis , Proportional Hazards Models , Proteomics/methods , Retrospective Studies , Sensitivity and Specificity , Severity of Illness Index , United States
3.
N Engl J Med ; 387(12): 1089-1098, 2022 09 22.
Article in English | MEDLINE | ID: covidwho-2036975

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of hospitalization for heart failure and cardiovascular death among patients with chronic heart failure and a left ventricular ejection fraction of 40% or less. Whether SGLT2 inhibitors are effective in patients with a higher left ventricular ejection fraction remains less certain. METHODS: We randomly assigned 6263 patients with heart failure and a left ventricular ejection fraction of more than 40% to receive dapagliflozin (at a dose of 10 mg once daily) or matching placebo, in addition to usual therapy. The primary outcome was a composite of worsening heart failure (which was defined as either an unplanned hospitalization for heart failure or an urgent visit for heart failure) or cardiovascular death, as assessed in a time-to-event analysis. RESULTS: Over a median of 2.3 years, the primary outcome occurred in 512 of 3131 patients (16.4%) in the dapagliflozin group and in 610 of 3132 patients (19.5%) in the placebo group (hazard ratio, 0.82; 95% confidence interval [CI], 0.73 to 0.92; P<0.001). Worsening heart failure occurred in 368 patients (11.8%) in the dapagliflozin group and in 455 patients (14.5%) in the placebo group (hazard ratio, 0.79; 95% CI, 0.69 to 0.91); cardiovascular death occurred in 231 patients (7.4%) and 261 patients (8.3%), respectively (hazard ratio, 0.88; 95% CI, 0.74 to 1.05). Total events and symptom burden were lower in the dapagliflozin group than in the placebo group. Results were similar among patients with a left ventricular ejection fraction of 60% or more and those with a left ventricular ejection fraction of less than 60%, and results were similar in prespecified subgroups, including patients with or without diabetes. The incidence of adverse events was similar in the two groups. CONCLUSIONS: Dapagliflozin reduced the combined risk of worsening heart failure or cardiovascular death among patients with heart failure and a mildly reduced or preserved ejection fraction. (Funded by AstraZeneca; DELIVER ClinicalTrials.gov number, NCT03619213.).


Subject(s)
Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Stroke Volume , Ventricular Function, Left , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucosides/adverse effects , Glucosides/therapeutic use , Heart Failure/complications , Heart Failure/drug therapy , Heart Failure/mortality , Heart Failure/physiopathology , Humans , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Stroke Volume/drug effects , Ventricular Function, Left/drug effects
4.
Sci Rep ; 12(1): 2670, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1704157

ABSTRACT

The prognosis of heart failure (HF) patients is determined to a decisive extent by comorbidities. The present study investigates the association between a broad spectrum of diseases and the occurrence of HF in a large collective of outpatients. This retrospective case control study assessed the prevalence of 37 cardiac and extracardiac diseases in patients with an initial diagnosis of heart failure (ICD-10: I50) in 1,274 general practices in Germany between January 2005 and December 2019. The study is based on the Disease Analyzer database (IQVIA), which contains drug prescriptions, diagnoses, and basic medical and demographic data. Patients with and without heart failure were matched by sex, age, and index year. Hazard regression models were conducted to evaluate the association between different disease entities and heart failure. The present study included 162,246 patients with heart failure and 162,246 patients without heart failure. Mean age [SD] was 73.7 [12.1] years; 52.6% were women. Out of 37 predefined diagnoses, 36 were more prevalent in HF patients. The highest prevalence was primary hypertension (63.4% in HF patients vs. 53.3% in controls, p < 0.001) followed by lipid metabolism disorders (34.6% in HF patients vs. 29.1% in HF patients p < 0.001) and diabetes mellitus type II (32.2% in HF patients vs. 25.2% in controls, p < 0.001). In the regression analysis, 19 diseases were significantly associated with heart failure. Non-cardiovascular diagnoses strongly associated with HF were obesity (HR = 1.46), chronic bronchitis and COPD (HR = 1.41), gout (HR: 1.41), and chronic kidney disease (HR = 1.27). In the present study, we identified a variety of cardiac and extracardiac diseases associated with heart failure. Our data underscore the immense importance of comorbidities, even as early as at the stage of initial diagnosis of heart failure.


Subject(s)
Comorbidity , Heart Failure , Models, Cardiovascular , Registries , Aged , Aged, 80 and over , Female , Germany , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/physiopathology , Humans , Male , Middle Aged , Retrospective Studies
5.
Cells ; 11(4)2022 02 10.
Article in English | MEDLINE | ID: covidwho-1690345

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an extremely contagious disease whereby the virus damages the host's respiratory tract via entering through the ACE2 receptor. Cardiovascular disorder is being recognized in the majority of COVID-19 patients; yet, the relationship between SARS-CoV-2 and heart failure has not been established. In the present study, SARS-CoV-2 infection was induced in the monkey model. Thereafter, heart tissue samples were collected, and pathological changes were analyzed in the left ventricular tissue by hematoxylin and eosin, trichrome, and immunohistochemical staining specific to T lymphocytes and macrophages. The findings revealed that SARS-CoV-2 infection induces several pathological changes in the heart, which cause cardiomyocyte disarray, mononuclear infiltrates of inflammatory cells, and hypertrophy. Furthermore, collagen-specific staining showed the development of cardiac fibrosis in the interstitial and perivascular regions in the hearts of infected primates. Moreover, the myocardial tissue samples displayed multiple foci of inflammatory cells positive for T lymphocytes and macrophages within the myocardium. These findings suggest the progression of the disease, which can lead to the development of severe complications, including heart failure. Additionally, SARS-CoV-2 antigen staining detected the presence of virus particles in the myocardium. Thus, we found that SARS-CoV-2 infection is characterized by an exaggerated inflammatory immune response in the heart, which possibly contributes to myocardial remodeling and subsequent fibrosis.


Subject(s)
COVID-19/immunology , Heart Failure/physiopathology , Heart/physiopathology , Animals , Chlorocebus aethiops , Heart/virology , Heart Failure/virology , Heart Ventricles/physiopathology , Heart Ventricles/virology , Immune System/pathology , Macaca mulatta , Myocarditis/virology , Myocardium/metabolism , SARS-CoV-2/pathogenicity
6.
Prog Cardiovasc Dis ; 69: 47-53, 2021.
Article in English | MEDLINE | ID: covidwho-1536982

ABSTRACT

Heart failure (HF) is associated with considerable morbidity and mortality. The increasing prevalence of HF and inpatient HF hospitalization has a considerable burden on healthcare cost and utilization. The recognition that hemodynamic changes in pulmonary artery pressure (PAP) and left atrial pressure precede the signs and symptoms of HF has led to interest in hemodynamic guided HF therapy as an approach to allow earlier intervention during a heart failure decompensation. Remote patient monitoring (RPM) utilizing telecommunication, cardiac implantable electronic device parameters and implantable hemodynamic monitors (IHM) have largely failed to demonstrate favorable outcomes in multicenter trials. However, one positive randomized clinical trial testing the CardioMEMS device (followed by Food and Drug Administration approval) has generated renewed interest in PAP monitoring in the HF population to decrease hospitalization and improve quality of life. The COVID-19 pandemic has also stirred a resurgence in the utilization of telehealth to which RPM using IHM may be complementary. The cost effectiveness of these monitors continues to be a matter of debate. Future iterations of devices aim to be smaller, less burdensome for the patient, less dependent on patient compliance, and less cumbersome for health care providers with the integration of artificial intelligence coupled with sophisticated data management and interpretation tools. Currently, use of IHM may be considered in advanced heart failure patients with the support of structured programs.


Subject(s)
Arterial Pressure , Atrial Function, Left , Atrial Pressure , Heart Failure/diagnosis , Hemodynamic Monitoring/instrumentation , Pulmonary Artery/physiopathology , Remote Sensing Technology/instrumentation , Telemedicine/instrumentation , Algorithms , COVID-19 , Diffusion of Innovation , Equipment Design , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Predictive Value of Tests , Prognosis , Reproducibility of Results , Signal Processing, Computer-Assisted
8.
BMC Cardiovasc Disord ; 21(1): 528, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1505900

ABSTRACT

BACKGROUND: The value of mechanical circulatory support (MCS) in cardiogenic shock, especially the combination of the ECMELLA approach (Impella combined with ECMO), remains controversial. CASE PRESENTATION: A previously healthy 33-year-old female patient was submitted to a local emergency department with a flu-like infection and febrile temperatures up to 39 °C. The patient was tested positive for type-A influenza, however negative for SARS-CoV-2. Despite escalated invasive ventilation, refractory hypercapnia (paCO2: 22 kPa) with severe respiratory acidosis (pH: 6.9) and a rising norepinephrine rate occurred within a few hours. Due to a Horovitz-Index < 100, out-of-centre veno-venous extracorporeal membrane oxygenation (vv-ECMO)-implantation was performed. A CT-scan done because of anisocoria revealed an extended dissection of the right vertebral artery. While the initial left ventricular function was normal, echocardiography revealed severe global hypokinesia. After angiographic exclusion of coronary artery stenoses, we geared up LV unloading by additional implantation of an Impella CP and expanded the vv-ECMO to a veno-venous-arterial ECMO (vva-ECMO). Clinically relevant bleeding from the punctured femoral arteries resulted in massive transfusion and was treated by vascular surgery later on. Under continued MCS, LVEF increased to approximately 40% 2 days after the initiation of ECMELLA. After weaning, the Impella CP was explanted at day 5 and the vva-ECMO was removed on day 9, respectively. The patient was discharged in an unaffected neurological condition to rehabilitation 25 days after the initial admission. CONCLUSIONS: This exceptional case exemplifies the importance of aggressive MCS in severe cardiogenic shock, which may be especially promising in younger patients with non-ischaemic cardiomyopathy and potentially reversible causes of cardiogenic shock. This case impressively demonstrates that especially young patients may achieve complete neurological restoration, even though the initial prognosis may appear unfavourable.


Subject(s)
Extracorporeal Membrane Oxygenation/methods , Heart-Assist Devices , Influenza A virus/isolation & purification , Influenza, Human , Respiration, Artificial/methods , Respiratory Insufficiency , Ventricular Dysfunction, Left , Adult , COVID-19/diagnosis , Clinical Deterioration , Critical Care/methods , Echocardiography/methods , Female , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/physiopathology , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , SARS-CoV-2 , Serologic Tests/methods , Severity of Illness Index , Shock, Cardiogenic/etiology , Shock, Cardiogenic/physiopathology , Shock, Cardiogenic/therapy , Treatment Outcome , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/therapy
9.
J Artif Organs ; 23(3): 292-295, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1453765

ABSTRACT

A 71-year-old man undergoing hemodialysis (HD) was admitted to our hospital with congestive heart failure (CHF) and pneumonia. After admission, ultrafiltration with HD was urgently performed because of a lack of respiratory improvement despite the use of noninvasive positive pressure ventilation. During HD, cerebral regional saturation of oxygen (rSO2) was monitored by INVOS 5100c oxygen saturation monitor (Covidien Japan, Japan) to evaluate changes in tissue oxygenation. At HD initiation, cerebral rSO2 was very low at 34% under the fraction of inspiratory oxygen (FiO2) of 0.4. Ultrafiltration was performed at the rate of 0.5 L/h thereafter, cerebral rSO2 gradually improved even as inhaling oxygen concentration decreased. At the end of HD, cerebral rSO2 improved at 40% under a FiO2 of 0.28 as excess body fluid was removed. After pneumonia and CHF improved, he was discharged. Reports of the association between cerebral oxygenation and acute CHF status in patients undergoing HD are limited; therefore, in our experience with this case, cerebral oxygenation deteriorated with the CHF status but was improved by adequate body-fluid management during HD.


Subject(s)
Brain/metabolism , Heart Failure/complications , Oxygen Consumption/physiology , Renal Dialysis , Renal Insufficiency/therapy , Aged , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Male , Monitoring, Physiologic , Renal Insufficiency/complications , Renal Insufficiency/metabolism
10.
Circ Heart Fail ; 14(10): e008573, 2021 10.
Article in English | MEDLINE | ID: covidwho-1443687

ABSTRACT

BACKGROUND: An unprecedented shift to remote heart failure outpatient care occurred during the coronavirus disease 2019 (COVID-19) pandemic. Given challenges inherent to remote care, we studied whether remote visits (video or telephone) were associated with different patient usage, clinician practice patterns, and outcomes. METHODS: We included all ambulatory cardiology visits for heart failure at a multisite health system from April 1, 2019, to December 31, 2019 (pre-COVID) or April 1, 2020, to December 31, 2020 (COVID era), resulting in 10 591 pre-COVID in-person, 7775 COVID-era in-person, 1009 COVID-era video, and 2322 COVID-era telephone visits. We used multivariable logistic and Cox proportional hazards regressions with propensity weighting and patient clustering to study ordering practices and outcomes. RESULTS: Compared with in-person visits, video visits were used more often by younger (mean 64.7 years [SD 14.5] versus 74.2 [14.1]), male (68.3% versus 61.4%), and privately insured (45.9% versus 28.9%) individuals (P<0.05 for all). Remote visits were more frequently used by non-White patients (35.8% video, 37.0% telephone versus 33.2% in-person). During remote visits, clinicians were less likely to order diagnostic testing (odds ratio, 0.20 [0.18-0.22] video versus in-person, 0.18 [0.17-0.19] telephone versus in-person) or prescribe ß-blockers (0.82 [0.68-0.99], 0.35 [0.26-0.47]), mineralocorticoid receptor antagonists (0.69 [0.50-0.96], 0.48 [0.35-0.66]), or loop diuretics (0.67 [0.53-0.85], 0.45 [0.37-0.55]). During telephone visits, clinicians were less likely to prescribe ACE (angiotensin-converting enzyme) inhibitor/ARB (angiotensin receptor blockers)/ARNIs (angiotensin receptor-neprilysin inhibitors; 0.54 [0.40-0.72]). Telephone visits but not video visits were associated with higher rates of 90-day mortality (1.82 [1.14-2.90]) and nonsignificant trends towards higher rates of 90-day heart failure emergency department visits (1.34 [0.97-1.86]) and hospitalizations (1.36 [0.98-1.89]). CONCLUSIONS: Remote visits for heart failure care were associated with reduced diagnostic testing and guideline-directed medical therapy prescription. Telephone but not video visits were associated with increased 90-day mortality.


Subject(s)
COVID-19 , Cardiologists/trends , Heart Failure/therapy , Practice Patterns, Physicians'/trends , Telemedicine/trends , Aged , Aged, 80 and over , Diagnostic Techniques and Procedures/trends , Drug Prescriptions , Drug Utilization/trends , Emergency Service, Hospital/trends , Female , Guideline Adherence/trends , Heart Failure/diagnosis , Heart Failure/mortality , Heart Failure/physiopathology , Hospitalization/trends , Humans , Male , Middle Aged , Practice Guidelines as Topic , Telephone/trends , Time Factors , Treatment Outcome , Videoconferencing/trends
11.
Rev Cardiovasc Med ; 22(3): 677-690, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1439022

ABSTRACT

Heart Failure (HF) is characterized by an elevated readmission rate, with almost 50% of events occurring after the first episode over the first 6 months of the post-discharge period. In this context, the vulnerable phase represents the period when patients elapse from a sub-acute to a more stabilized chronic phase. The lack of an accurate approach for each HF subtype is probably the main cause of the inconclusive data in reducing the trend of recurrent hospitalizations. Most care programs are based on the main diagnosis and the HF stages, but a model focused on the specific HF etiology is lacking. The HF clinic route based on the HF etiology and the underlying diseases responsible for HF could become an interesting approach, compared with the traditional programs, mainly based on non-specific HF subtypes and New York Heart Association class, rather than on detailed etiologic and epidemiological data. This type of care may reduce the 30-day readmission rates for HF, increase the use of evidence-based therapies, prevent the exacerbation of each comorbidity, improve patient compliance, and decrease the use of resources. For all these reasons, we propose a dedicated outpatient HF program with a daily practice scenario that could improve the early identification of symptom progression and the quality-of-life evaluation, facilitate the access to diagnostic and laboratory tools and improve the utilization of financial resources, together with optimal medical titration and management.


Subject(s)
Ambulatory Care/organization & administration , COVID-19 , Cardiology Service, Hospital/organization & administration , Delivery of Health Care, Integrated/organization & administration , Heart Failure/therapy , Telemedicine/organization & administration , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/physiopathology , Humans , Patient Readmission , Prognosis
12.
Circ Heart Fail ; 14(9): e008354, 2021 09.
Article in English | MEDLINE | ID: covidwho-1406681

ABSTRACT

BACKGROUND: It is important to understand the risk for in-hospital mortality of adults hospitalized with acute coronavirus disease 2019 (COVID-19) infection with a history of heart failure (HF). METHODS: We examined patients hospitalized with COVID-19 infection from January 1, 2020 to July 22, 2020, from 88 centers across the US participating in the American Heart Association's COVID-19 Cardiovascular Disease registry. The primary exposure was history of HF and the primary outcome was in-hospital mortality. To examine the association between history of HF and in-hospital mortality, we conducted multivariable modified Poisson regression models that included sociodemographics and comorbid conditions. We also examined HF subtypes based on left ventricular ejection fraction in the prior year, when available. RESULTS: Among 8920 patients hospitalized with COVID-19, mean age was 61.4±17.5 years and 55.5% were men. History of HF was present in 979 (11%) patients. In-hospital mortality occurred in 31.6% of patients with history of HF, and 16.9% in patients without a history of HF. In a fully adjusted model, history of HF was associated with increased risk for in-hospital mortality (relative risk: 1.16 [95% CI, 1.03-1.30]). Among 335 patients with left ventricular ejection fraction, heart failure with reduced ejection fraction was significantly associated with in-hospital mortality in a fully adjusted model (heart failure with reduced ejection fraction relative risk: 1.40 [95% CI, 1.10-1.79]; heart failure with mid-range ejection fraction relative risk: 1.06 [95% CI, 0.65-1.73]; heart failure with preserved ejection fraction relative risk, 1.06 [95% CI, 0.84-1.33]). CONCLUSIONS: Risk for in-hospital mortality was substantial among adults with history of HF, in large part due to age and comorbid conditions. History of heart failure with reduced ejection fraction may confer especially elevated risk. This population thus merits prioritization for the COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/mortality , Heart Failure/mortality , Stroke Volume/physiology , Adult , Aged , Aged, 80 and over , Female , Heart Failure/physiopathology , Hospital Mortality , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2/pathogenicity
13.
Lancet ; 398(10304): 991-1001, 2021 09 11.
Article in English | MEDLINE | ID: covidwho-1373313

ABSTRACT

BACKGROUND: Previous studies have suggested that haemodynamic-guided management using an implantable pulmonary artery pressure monitor reduces heart failure hospitalisations in patients with moderately symptomatic (New York Heart Association [NYHA] functional class III) chronic heart failure and a hospitalisation in the past year, irrespective of ejection fraction. It is unclear if these benefits extend to patients with mild (NYHA functional class II) or severe (NYHA functional class IV) symptoms of heart failure or to patients with elevated natriuretic peptides without a recent heart failure hospitalisation. This trial was designed to evaluate whether haemodynamic-guided management using remote pulmonary artery pressure monitoring could reduce heart failure events and mortality in patients with heart failure across the spectrum of symptom severity (NYHA funational class II-IV), including those with elevated natriuretic peptides but without a recent heart failure hospitalisation. METHODS: The randomised arm of the haemodynamic-GUIDEed management of Heart Failure (GUIDE-HF) trial was a multicentre, single-blind study at 118 centres in the USA and Canada. Following successful implantation of a pulmonary artery pressure monitor, patients with all ejection fractions, NYHA functional class II-IV chronic heart failure, and either a recent heart failure hospitalisation or elevated natriuretic peptides (based on a-priori thresholds) were randomly assigned (1:1) to either haemodynamic-guided heart failure management based on pulmonary artery pressure or a usual care control group. Patients were masked to their study group assignment. Investigators were aware of treatment assignment but did not have access to pulmonary artery pressure data for control patients. The primary endpoint was a composite of all-cause mortality and total heart failure events (heart failure hospitalisations and urgent heart failure hospital visits) at 12 months assessed in all randomly assigned patients. Safety was assessed in all patients. A pre-COVID-19 impact analysis for the primary and secondary outcomes was prespecified. This study is registered with ClinicalTrials.gov, NCT03387813. FINDINGS: Between March 15, 2018, and Dec 20, 2019, 1022 patients were enrolled, with 1000 patients implanted successfully, and follow-up was completed on Jan 8, 2021. There were 253 primary endpoint events (0·563 per patient-year) among 497 patients in the haemodynamic-guided management group (treatment group) and 289 (0·640 per patient-year) in 503 patients in the control group (hazard ratio [HR] 0·88, 95% CI 0·74-1·05; p=0·16). A prespecified COVID-19 sensitivity analysis using a time-dependent variable to compare events before COVID-19 and during the pandemic suggested a treatment interaction (pinteraction=0·11) due to a change in the primary endpoint event rate during the pandemic phase of the trial, warranting a pre-COVID-19 impact analysis. In the pre-COVID-19 impact analysis, there were 177 primary events (0·553 per patient-year) in the intervention group and 224 events (0·682 per patient-year) in the control group (HR 0·81, 95% CI 0·66-1·00; p=0·049). This difference in primary events almost disappeared during COVID-19, with a 21% decrease in the control group (0·536 per patient-year) relative to pre-COVID-19, virtually no change in the treatment group (0·597 per patient-year), and no difference between groups (HR 1·11, 95% CI 0·80-1·55; p=0·53). The cumulative incidence of heart failure events was not reduced by haemodynamic-guided management (0·85, 0·70-1·03; p=0·096) in the overall study analysis but was significantly decreased in the pre-COVID-19 impact analysis (0·76, 0·61-0·95; p=0·014). 1014 (99%) of 1022 patients had freedom from device or system-related complications. INTERPRETATION: Haemodynamic-guided management of heart failure did not result in a lower composite endpoint rate of mortality and total heart failure events compared with the control group in the overall study analysis. However, a pre-COVID-19 impact analysis indicated a possible benefit of haemodynamic-guided management on the primary outcome in the pre-COVID-19 period, primarily driven by a lower heart failure hospitalisation rate compared with the control group. FUNDING: Abbott.


Subject(s)
Electrodes, Implanted , Heart Failure , Hemodynamics , Hospitalization/statistics & numerical data , Pulmonary Artery , Aged , COVID-19 , Female , Heart Failure/classification , Heart Failure/physiopathology , Hemodynamics/physiology , Hospitalization/trends , Humans , Male , Mortality/trends , Remote Sensing Technology
14.
Rev Cardiovasc Med ; 22(2): 403-413, 2021 06 30.
Article in English | MEDLINE | ID: covidwho-1310352

ABSTRACT

In the context of the COVID-19 pandemic, many barriers to telemedicine disappeared. Virtual visits and telemonitoring strategies became routine. Evidence is accumulating regarding the safety and efficacy of virtual visits to replace in-person visits. A structured approach to virtual encounters is recommended. Telemonitoring includes patient reported remote vital sign monitoring, information from wearable devices, cardiac implantable electronic devices and invasive remote hemodynamic monitoring. The intensity of the monitoring should match the risk profile of the patient. Attention to cultural and educational barriers is important to prevent disparities in telehealth implementation.


Subject(s)
COVID-19 , Heart Failure/therapy , Telemedicine , Chronic Disease , Healthcare Disparities , Heart Failure/diagnosis , Heart Failure/physiopathology , Humans , Predictive Value of Tests , Prognosis , Race Factors , Remote Consultation/instrumentation , Remote Sensing Technology/instrumentation , Socioeconomic Factors , Telemedicine/instrumentation , Wearable Electronic Devices
15.
Rev Cardiovasc Med ; 22(2): 271-276, 2021 06 30.
Article in English | MEDLINE | ID: covidwho-1310347

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is an unprecedented challenge. Meeting this has resulted in changes to working practices and the impact on the management of patients with heart failure with reduced ejection fraction (HFrEF) is largely unknown. We performed a retrospective, observational study contrasting patients diagnosed with HFrEF attending specialist heart failure clinics at a UK hospital, whose subsequent period of optimisation of medical therapy was during the COVID-19 pandemic, with patients diagnosed the previous year. The primary outcome was the change in equivalent dosing of ramipril and bisoprolol at 6-months. Secondary outcomes were the number and type of follow-up consultations, hospitalisation for heart failure and all-cause mortality. In total, 60 patients were diagnosed with HFrEF between 1 December 2019 and 30 April 2020, compared to 54 during the same period of the previous year. The absolute number of consultations was higher (390 vs 270; p = 0.69), driven by increases in telephone consultations, with a reduction in appointments with hospital nurse specialists. After 6-months, we observed lower equivalent dosing of ramipril (3.1 ± 3.0 mg vs 4.4 ± 0.5 mg; p = 0.035) and similar dosing of bisoprolol (4.1 ± 0.5 mg vs 4.9 ± 0.5 mg; p = 0.27), which persisted for ramipril (mean difference 1.0 mg, 95% CI 0.018-2.09; p = 0.046) and bisoprolol (mean difference 0.52 mg, 95% CI -0.23-1.28; p = 0.17) after adjustment for baseline dosing. We observed no differences in the proportion of patients who died (5.0% vs 7.4%; p = 0.59) or were hospitalised with heart failure (13.3% vs 9.3%; p = 0.49). Our study suggests the transition to telephone appointments and re-deployment of heart failure nurse specialists was associated with less successful optimisation of medical therapy, especially renin-angiotensin inhibitors, compared with usual care.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Bisoprolol/administration & dosage , COVID-19 , Heart Failure/drug therapy , Ramipril/administration & dosage , Adrenergic beta-1 Receptor Antagonists/adverse effects , Aged , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Bisoprolol/adverse effects , Chronic Disease , Female , Heart Failure/diagnosis , Heart Failure/mortality , Heart Failure/physiopathology , Humans , Male , Ramipril/adverse effects , Retrospective Studies , Time Factors , Treatment Outcome
16.
Cardiovasc Res ; 117(10): 2161-2174, 2021 08 29.
Article in English | MEDLINE | ID: covidwho-1266111

ABSTRACT

We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches, such as a glycocalyx mimetic, were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to-cell communication, in particular, the relevance of extracellular vesicles, such as exosomes, which transport proteins, lipids, non-coding RNAs, and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.


Subject(s)
Biomedical Research , Cardiology , Cell Proliferation , Heart Failure/pathology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Regeneration , Animals , COVID-19/pathology , COVID-19/virology , Cell Communication , Cellular Microenvironment , Exosomes/metabolism , Exosomes/pathology , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Phenotype , RNA, Untranslated/metabolism , SARS-CoV-2/pathogenicity
17.
Open Heart ; 8(1)2021 06.
Article in English | MEDLINE | ID: covidwho-1263930

ABSTRACT

OBJECTIVES: This meta-analysis aims to (1) evaluate the efficacy of physical activity interventions in heart failure and (2) to identify intervention characteristics significantly associated with the interventions' efficacy. METHODS: Randomised controlled trials reporting intervention effects on physical activity in heart failure were combined in a meta-analysis using a random-effect model. Exploratory meta-analysis was performed by specifying the general approach (eg, cardiac rehabilitation), strategies used (eg, action planning), setting (eg, centre based), mode of delivery (eg, face to face or online), facilitator (eg, nurse), contact time and behavioural change theory use as predictors in the random-effect model. RESULTS: Interventions (n=21) had a significant overall effect (SMD=0.54, 95% CI (0.13 to 0.95), p<0.0005). Combining an exercise programme with behavioural change intervention was found efficacious (SMD=1.26, 95% CI (0.26 to 2.26), p<0.05). Centre-based (SMD=0.98, 95% CI (0.35 to 1.62), and group-based (SMD=0.89, 95% CI (0.29 to 1.50),) delivery by a physiotherapist (SMD=0.84, 95% CI (0.03 to 1.65),) were significantly associated with efficacy. The following strategies were identified efficacious: prompts/cues (SMD=3.29, 95% CI (1.97 to 4.62)), credible source (standardised mean difference, SMD=2.08, 95% CI (0.95;3.22)), adding objects to the environment (SMD=1.47, 95% CI (0.41 to 2.53)), generalisation of the target behaviour SMD=1.32, 95% CI (0.22 to 2.41)), monitoring of behaviour by others without feedback (SMD=1.02, 95% CI (0.05 to 1.98)), self-monitoring of outcome(s) of behaviour (SMD=0.79, 95% CI (0.06 to 1.52), graded tasks (SMD=0.73, 95% CI (0.22 to 1.24)), behavioural practice/rehearsal (SMD=0.72, 95% CI (0.26 to 1.18)), action planning (SMD=0.62, 95% CI (0.03 to 1.21)) and goal setting (behaviour) (SMD=0.56, 95% CI (0.03 to 1.08)). CONCLUSION: The meta-analysis suggests intervention characteristics that may be suitable for promoting physical activity in heart failure. There is moderate evidence in support of an exercise programme combined with a behavioural change intervention delivered by a physiotherapist in a group-based and centre-based settings. PROSPERO REGISTERATION: CRD42015015280.


Subject(s)
Behavior Therapy/methods , Cardiac Rehabilitation/methods , Exercise/physiology , Heart Failure/rehabilitation , Heart Failure/physiopathology , Humans , Treatment Outcome
18.
Arch Cardiovasc Dis ; 114(5): 415-425, 2021 May.
Article in English | MEDLINE | ID: covidwho-1240130

ABSTRACT

BACKGROUND: Although cardiovascular comorbidities seem to be strongly associated with worse outcomes in patients with coronavirus disease 2019 (COVID-19), data regarding patients with preexisting heart failure are limited. AIMS: To investigate the incidence, characteristics and clinical outcomes of patients with COVID-19 with a history of heart failure with preserved or reduced ejection fraction. METHODS: We performed an observational multicentre study including all patients hospitalized for COVID-19 across 24 centres in France from 26 February to 20 April 2020. The primary endpoint was a composite of in-hospital death or need for orotracheal intubation. RESULTS: Overall, 2809 patients (mean age 66.4±16.9years) were included. Three hundred and seventeen patients (11.2%) had a history of heart failure; among them, 49.2% had heart failure with reduced ejection fraction and 50.8% had heart failure with preserved ejection fraction. COVID-19 severity at admission, defined by a quick sequential organ failure assessment score>1, was similar in patients with versus without a history of heart failure. Before and after adjustment for age, male sex, cardiovascular comorbidities and quick sequential organ failure assessment score, history of heart failure was associated with the primary endpoint (hazard ratio [HR]: 1.41, 95% confidence interval [CI]: 1.06-1.90; P=0.02). This result seemed to be mainly driven by a history of heart failure with preserved ejection fraction (HR: 1.61, 95% CI: 1.13-2.27; P=0.01) rather than heart failure with reduced ejection fraction (HR: 1.19, 95% CI: 0.79-1.81; P=0.41). CONCLUSIONS: History of heart failure in patients with COVID-19 was associated with a higher risk of in-hospital death or orotracheal intubation. These findings suggest that patients with a history of heart failure, particularly heart failure with preserved ejection fraction, should be considered at high risk of clinical deterioration.


Subject(s)
COVID-19/epidemiology , Heart Failure/epidemiology , Registries/statistics & numerical data , SARS-CoV-2 , Aged , COVID-19/blood , Comorbidity , Confounding Factors, Epidemiologic , Female , France/epidemiology , Heart Failure/blood , Heart Failure/physiopathology , Hospital Mortality , Humans , Incidence , Intubation, Intratracheal/statistics & numerical data , Kaplan-Meier Estimate , Male , Middle Aged , Procedures and Techniques Utilization , Retrospective Studies , Risk Factors , Stroke Volume , Treatment Outcome
19.
Hypertension ; 77(6): 2014-2022, 2021 06.
Article in English | MEDLINE | ID: covidwho-1221676

ABSTRACT

Presence of heart failure is associated with a poor prognosis in patients with coronavirus disease 2019 (COVID-19). The aim of the present study was to examine whether first-phase ejection fraction (EF1), the ejection fraction measured in early systole up to the time of peak aortic velocity, a sensitive measure of preclinical heart failure, is associated with survival in patients hospitalized with COVID-19. A retrospective outcome study was performed in patients hospitalized with COVID-19 who underwent echocardiography (n=380) at the West Branch of the Union Hospital, Wuhan, China and in patients admitted to King's Health Partners in South London, United Kingdom. Association of EF1 with survival was performed using Cox proportional hazards regression. EF1 was compared in patients with COVID-19 and in historical controls with similar comorbidities (n=266) who had undergone echocardiography before the COVID-19 pandemic. In patients with COVID-19, EF1 was a strong predictor of survival in each patient group (Wuhan and London). In the combined group, EF1 was a stronger predictor of survival than other clinical, laboratory, and echocardiographic characteristics including age, comorbidities, and biochemical markers. A cutoff value of 25% for EF1 gave a hazard ratio of 5.23 ([95% CI, 2.85-9.60]; P<0.001) unadjusted and 4.83 ([95% CI, 2.35-9.95], P<0.001) when adjusted for demographics, comorbidities, hs-cTnI (high-sensitive cardiac troponin), and CRP (C-reactive protein). EF1 was similar in patients with and without COVID-19 (23.2±7.3 versus 22.0±7.6%, P=0.092, adjusted for prevalence of risk factors and comorbidities). Impaired EF1 is strongly associated with mortality in COVID-19 and probably reflects preexisting, preclinical heart failure.


Subject(s)
COVID-19 , Echocardiography , Heart Failure , Stroke Volume , Adult , Aged , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , China/epidemiology , Comorbidity , Echocardiography/methods , Echocardiography/statistics & numerical data , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/physiopathology , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Outcome and Process Assessment, Health Care , Predictive Value of Tests , Prevalence , Prognosis , SARS-CoV-2/isolation & purification , Survival Analysis , United Kingdom/epidemiology
20.
Glob Heart ; 16(1): 18, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1175699

ABSTRACT

The current pandemic of SARS-COV 2 infection (Covid-19) is challenging health systems and communities worldwide. At the individual level, the main biological system involved in Covid-19 is the respiratory system. Respiratory complications range from mild flu-like illness symptoms to a fatal respiratory distress syndrome or a severe and fulminant pneumonia. Critically, the presence of a pre-existing cardiovascular disease or its risk factors, such as hypertension or type II diabetes mellitus, increases the chance of having severe complications (including death) if infected by the virus. In addition, the infection can worsen an existing cardiovascular disease or precipitate new ones. This paper presents a contemporary review of cardiovascular complications of Covid-19. It also specifically examines the impact of the disease on those already vulnerable and on the poorly resourced health systems of Africa as well as the potential broader consequences on the socio-economic health of this region.


Subject(s)
COVID-19/physiopathology , Cardiovascular Diseases/physiopathology , Acute Coronary Syndrome/economics , Acute Coronary Syndrome/etiology , Acute Coronary Syndrome/physiopathology , Africa , Antimalarials/adverse effects , Arrhythmias, Cardiac/economics , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , COVID-19/complications , COVID-19/economics , Cardiovascular Diseases/economics , Cardiovascular Diseases/etiology , Chloroquine/adverse effects , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Delivery of Health Care/economics , Economic Factors , Economic Recession , Gross Domestic Product , Health Resources/economics , Health Resources/supply & distribution , Heart Failure/economics , Heart Failure/etiology , Heart Failure/physiopathology , Humans , Hydroxychloroquine/adverse effects , Inflammation , Myocardial Ischemia/economics , Myocardial Ischemia/etiology , Myocardial Ischemia/physiopathology , Myocarditis/economics , Myocarditis/etiology , Myocarditis/physiopathology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/physiopathology , Socioeconomic Factors , Takotsubo Cardiomyopathy/economics , Takotsubo Cardiomyopathy/etiology , Takotsubo Cardiomyopathy/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL